Homework

November 4, 2019

1 Lecture 3

1. A function f is called uniformly convex of degree $\rho \geq 2$ on a set Q if there exists a constant $\sigma_{\rho} \geq 0$ such that, for all $x, y \in Q$ and $\nabla f(x) \in \partial f(x)$,

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\rho}{2}\|x-y\|^{\rho} .
$$

Subgradient of f is said to be Hölder-continuous if for some $\nu \in[0,1]$ and $L_{\nu}>0$

$$
\|\nabla f(x)-\nabla f(y)\| \leq L_{\nu}\|x-y\|^{\nu}
$$

Show that if f is uniformly convex then its conjugate f^{*} has Hölder-continuous subgradient and find the parameters ν, L_{ν}.
2. Find the Legendre-Fenchel conjugate for

$$
\sum_{i=1}^{n} x_{i} \ln x_{i}, \quad \sum_{i=1} x_{i}=1, \quad x_{i} \geq 0, i=1, \ldots, n
$$

Note that by continuity $x \log x$ is defined to be 0 at $x=0$.
3. Assume that the function f is Lipschitz-continuous with the constant M

$$
|f(x)-f(y)| \leq M\|x-y\|_{2} .
$$

Prove that $\operatorname{dom} f^{*}$ is bounded and find an estimate for the radius of the ball which contains dom f^{*}.
4. Using the Legendre-Fenchel conjugate, show that, for all x, y

$$
x^{T} y \leq \frac{1}{2}\|x\|^{2}+\frac{1}{2}\|y\|_{*}^{2},
$$

where the conjugate norm $\|y\|_{*}$ is defined as

$$
\|y\|_{*}=\max _{x}\left\{y^{T} x:\|x\| \leq 1\right\}
$$

In particular, for $p \geq 1,\|y\|_{q}$ is conjugate for $\|x\|_{p}$, where $1 / p+1 / q=1$ with the convention that $1 / 1+1 / \infty=1$.

